### Driving renewable energy for transport

Next generation policy instruments for renewable transport (RES-T-NEXT)

#### Name

Huib van Essen, CE Delft REN21 workshop Paris, 12 January 2016

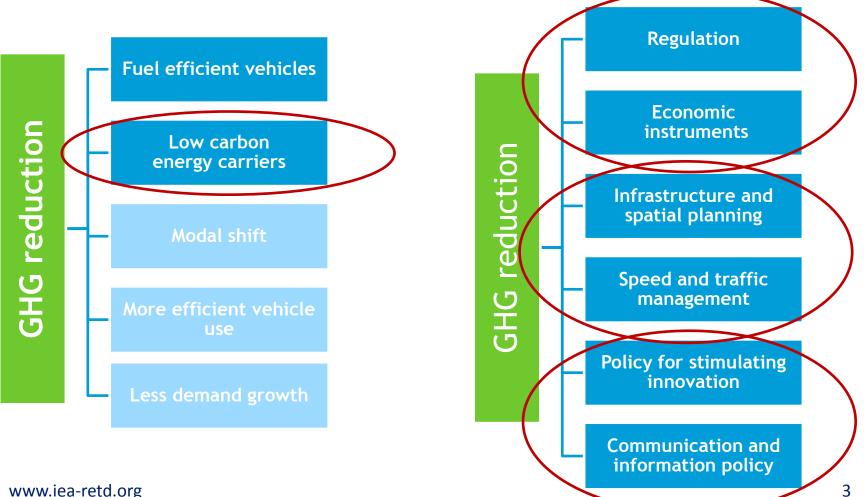


**Technology Deployment** 



### **CE Delft**

- Independent research and consultancy since 1978
- Transport, energy and resources
- Know-how on economics, technology and policy issues
- 45 Employees, based in Delft, the Netherlands
- Not-for-profit




- Clients: European Commission and Parliament, national and regional governments, industries and NGO's
- All our publications <u>www.cedelft.eu</u> or @CEDelft





### **Broader context of the study: GHG reduction options** (technical/behavioural) and main types of policy instruments





# The mission of IEA-RETD is to accelerate the large-scale deployment of renewable energies

RETD stands for "Renewable Energy Technology Deployment".

IEA-RETD is a **policy-focused, technology cross-cutting platform** ("Implementing Agreement") under the legal framework of the International Energy Agency

- Created in 2005, currently 8 member countries: Canada, Denmark, France, Germany, Ireland, Japan, Norway, UK.
- IEA-RETD commissions annually 5-7 studies bringing together the experience of some of the world's leading countries in RE with the expertise of renowned consulting firms and academia.
- Reports and handbooks are freely available at <u>www.iea-retd.org</u>.
- IEA-RETD organizes workshops and presents at international events.



### Agenda

Background, objectives

Study overview: pathways considered and their advantages/disadvantages

Key policies currently used to promote RES-T

Policy assessment results

Policy recommendations for each pathway

Conclusion and major findings



### Next generation policy instruments for renewable transport (RES-T-NEXT)

- The transition from conventional fuels to renewable energy sources in transport (RES-T) is crucial for meeting long-term climate targets and energy security goals
- Large-scale uptake of alternative energy carriers requires changes in three main dimensions: vehicles, infrastructure and availability of energy carriers
- Barriers impede transition to alternative energy and policy interventions are needed, but differ per technology pathway and can change over time
- Various regions have developed policies to increase RES-T; some were more successful than others
- To ensure a transition to RES-T in all regions, lessons learned must be considered from the approaches taken so far and need innovative policies



# Primary aim is to provide recommendations for next generation policy instruments and strategies to increase RES-T

| Aspect                   | Included                                                                           |
|--------------------------|------------------------------------------------------------------------------------|
| Renewable energy sources | <ul><li>Renewable electricity</li><li>Biofuels (both liquid and gaseous)</li></ul> |
| for transport (RES-T)    | <ul> <li>Hydrogen</li> </ul>                                                       |
| Sector                   | Transport sector including the dependencies between the                            |
|                          | transport sector, the energy sector, and industry                                  |
|                          | <ul> <li>Passenger transport (cars, two wheelers and buses)</li> </ul>             |
| Transport modes          | <ul> <li>Urban freight transport (light commercial vehicles and light</li> </ul>   |
|                          | trucks)                                                                            |
|                          | Financial incentives                                                               |
|                          | Regulations                                                                        |
| Policy measures          | <ul> <li>Awareness/information related policies</li> </ul>                         |
|                          | <ul> <li>Public procurement and PPPs</li> </ul>                                    |
|                          | <ul> <li>Transport and Spatial policies</li> </ul>                                 |
|                          | IEA-RETD member countries (Canada, Denmark, France, Germany,                       |
| Geographical scope       | Ireland, Japan, Norway, and United Kingdom) and other relevant                     |
|                          | countries (e.g. USA, Japan)                                                        |
|                          | <ul> <li>Short term: up to the next 5 years</li> </ul>                             |
| Time horizon             | <ul> <li>Mid-term: 10-15 years</li> </ul>                                          |
| www.iea-retd.org         | • Long term: 30-40 years 7                                                         |



### Agenda

Background, objectives and major findings

Study overview: pathways considered and their advantages/disadvantages

Key policies currently used to promote RES-T

Policy assessment results

Policy recommendations for each pathway

Conclusion and major findings



## Battery-electric and hydrogen more radical pathways than biofuels (unless high blends are used)

| <b>RES-T Pathway</b> | Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Battery-electric     | <ul> <li>Relatively radical pathway because the performance and usage of vehicles and energy infrastructure are inherently different from ICVs: vehicles need to be charged not fuelled and the driving range is significantly smaller (for now) compared to ICVs.</li> <li>Distinction made between Full Electric Vehicles (FEVs) and semi-electric vehicles: Plug-in Hybrid Electric Vehicles (PHEVs) and Electric Range Extended Vehicles (EREVs).</li> <li>The semi-electric technologies are less radical compared to FEVs, as the driving range is comparable to ICVs.</li> </ul> |  |  |  |  |  |  |
| Hydrogen             | <ul> <li>Also radical because the vehicle technology (Fuel Cell Electric Vehicles (FCEVs)) and energy infrastructure are inherently different from ICEVs</li> <li>Could be combined with battery-electric with fuel cells as range extender</li> <li>Only the application of hydrogen by means of FCEVs is explored in this study</li> </ul>                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Biofuel              | <ul> <li>More moderate pathway, especially for low blends, which can be used by conventional vehicles and distributed by existing infrastructure</li> <li>High blends and biogas require some adjustments in vehicles (dedicated biofuel vehicles) and infrastructure and therefore more technical adaptations.</li> <li>Compared to hydrogen and electric vehicles, less radical as the vehicle performance and usage is similar to those of ICVs</li> </ul>                                                                                                                           |  |  |  |  |  |  |



## Battery-electric and hydrogen more advantageous for GHG, air pollution emissions reduction and energy security

|                                                                                      | Energy carrier   |          |               |  |  |  |
|--------------------------------------------------------------------------------------|------------------|----------|---------------|--|--|--|
| Advantage                                                                            | Battery-electric | Hydrogen | Biofuel       |  |  |  |
| Preventing climate change –<br>decarbonisation                                       | High**           | High**   | Medium-high * |  |  |  |
| Reducing local air pollution and noise                                               | High             | High     | Low           |  |  |  |
| Reducing the dependency on imports – security of energy supply                       | High**           | High**   | Medium        |  |  |  |
| Exploiting market opportunities –<br>employment, trading balance and GDP<br>benefits | High             | High     | Medium-high   |  |  |  |
| Buffering – electricity storage                                                      | Low/Medium***    | High***  | n/a           |  |  |  |

\* applies to advanced biofuel and biofuels without significant ILUC or other adverse GHG impacts

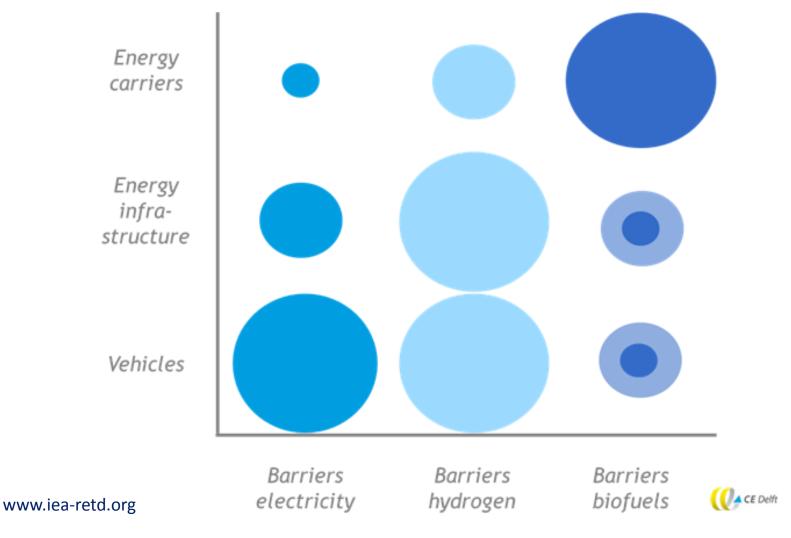
\*\* If consumed electricity/hydrogen has been produced with renewable sources

\*\*\* The magnitude of these advantages and their (economic) value is still uncertain



## Financial and infrastructure barriers high for battery-electric and hydrogen, low-medium for biofuels

| Barrier                                                       | Dimension                                   | Energy carrier       |          |              |  |  |
|---------------------------------------------------------------|---------------------------------------------|----------------------|----------|--------------|--|--|
| Darrier                                                       | Dimension                                   | Battery-<br>electric | Hydrogen | Biofuel      |  |  |
|                                                               | Energy Carrier                              | Low                  | Low      | High         |  |  |
| Financial barriers*                                           | Energy infrastructure                       | Medium               | High     | Low-medium** |  |  |
|                                                               | Vehicle                                     | High                 | High     | Low          |  |  |
| Technical barriers vehicle                                    | Vehicle                                     | Medium-High          | High     | Low-medium** |  |  |
| technology & compatibility                                    | Energy carrier                              | Low                  | Low      | Low-medium** |  |  |
| Low acceptance by transport users                             | All                                         | Medium-High          | High     | Low-medium** |  |  |
| Lack of sufficient energy<br>infrastructure                   | Energy infrastructure                       | Medium               | High     | Low-medium** |  |  |
| Vested interests                                              | All                                         | High                 | High     | Medium       |  |  |
| Competition for the use of available renewable energy sources | r the use of<br>vable energy Energy carrier |                      | Low      | Medium       |  |  |
| Investment risks*                                             | All                                         | High                 | High     | High         |  |  |


\*Financial barriers are from a demand/consumer perspective; investment risks rather from the supply/industry perspective.

\*\*Medium mainly applies to high blends. These barriers are low for low blends, as these can be used with existing infrastructure and vehicles.



12

Battery-electric and hydrogen require transition where vehicles and energy infrastructure need to be completely replaced by a new framework; transition incremental for biofuels

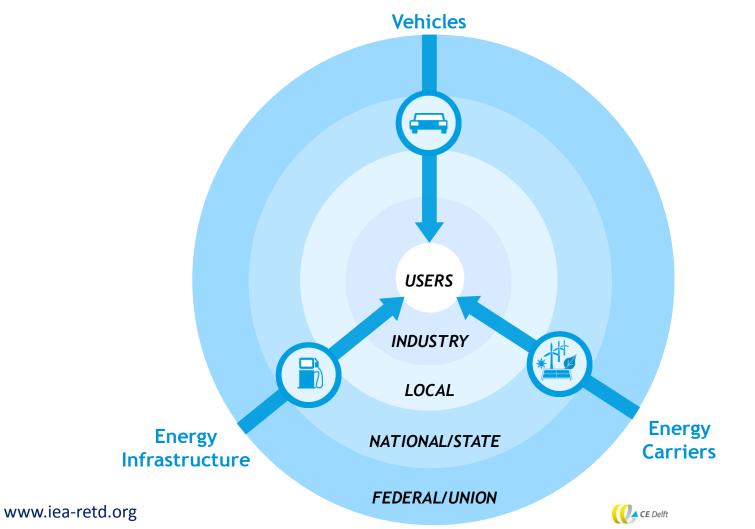




### Agenda

Background, objectives and major findings

Study overview: pathways considered and their advantages/disadvantages


Key policies currently used to promote RES-T

Policy assessment results

Policy recommendations for each pathway

Conclusion and major findings

### Without policy intervention at different administrative levels and three dimensions, transition to RES-T unlikely to take place



**IEA-RETD** 



### Mix of policies used to promote RES-T; some more effective than others

|                          | US/Canada                                                                                                                     | EU                                                                                                                                       | Kina China                                                                                                                      | Japan                                                                                         |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                          | 3                                                                                                                             | 1                                                                                                                                        |                                                                                                                                 |                                                                                               |
| Energy carrier           | <ul> <li>Mandate on<br/>the volume of<br/>renewables in<br/>fuel</li> </ul>                                                   | <ul> <li>Mandate for<br/>RES-T</li> <li>Mandate for<br/>renewables in<br/>fuels</li> </ul>                                               | <ul> <li>Targets for<br/>renewables<br/>in fuel</li> </ul>                                                                      | <ul> <li>Mandate for<br/>volumes of<br/>ethanol</li> </ul>                                    |
| Energy<br>Infrastructure | <ul> <li>No federal<br/>policies on<br/>alternative<br/>infrastructure<br/>, but States<br/>have grants/<br/>loans</li> </ul> | <ul> <li>Directive<br/>requiring MS<br/>to implement<br/>policy for<br/>alternative<br/>energy<br/>infrastructure</li> </ul>             | <ul> <li>Large scale<br/>roll-out of EV<br/>charging<br/>points in 20<br/>pilot cities</li> </ul>                               | <ul> <li>Subsidies<br/>for H2<br/>filling<br/>stations and<br/>charging<br/>points</li> </ul> |
| Vehicle                  | <ul> <li>LDV/HDV<br/>standards</li> <li>Some US<br/>states have<br/>ZEV Mandates</li> </ul>                                   | <ul> <li>LDV<br/>standards<br/>with specific<br/>incentive for<br/>EVs</li> <li>Many fiscal<br/>incentives for<br/>AFVs by MS</li> </ul> | <ul> <li>LDV/HDV<br/>standards</li> <li>Min. shares<br/>of AFVs in<br/>public fleets</li> <li>AFV subsidy<br/>scheme</li> </ul> | <ul> <li>LDV/HDV<br/>standards</li> <li>National<br/>targets for<br/>AFV sales</li> </ul>     |

## Most barriers can be overcome with multiple types of policy instruments directed at each pillar

|                                                   |                          | Main type of policy instrument |            |                          |                                 |                                    |  |
|---------------------------------------------------|--------------------------|--------------------------------|------------|--------------------------|---------------------------------|------------------------------------|--|
| Barrier                                           | Pillar                   | Financial<br>instruments       | Regulation | Information<br>provision | Public<br>procurement<br>& PPPs | Transport<br>& Spatial<br>policies |  |
|                                                   | Vehicle                  | Х                              | Х          |                          | Х                               | Х                                  |  |
| Financial barriers                                | Energy<br>carrier        | Х                              | Х          |                          | Х                               |                                    |  |
|                                                   | Energy<br>infrastructure | Х                              |            |                          | Х                               |                                    |  |
|                                                   | Vehicle                  | Х                              | Х          |                          | Х                               |                                    |  |
| Technical barriers                                | Energy<br>carrier        | Х                              |            |                          |                                 |                                    |  |
| Low acceptance by transport users                 | All                      | Х                              |            | Х                        | х                               | х                                  |  |
| Lack of sufficient<br>energy<br>infrastructure    | Energy<br>infrastructure | х                              | x          |                          | х                               |                                    |  |
| Vested interests                                  | All                      | Х                              | Х          |                          | Х                               | Х                                  |  |
| Competition for<br>the use of<br>renewable energy | Energy<br>carrier        | х                              | x          |                          |                                 |                                    |  |
| Investment risks                                  | All                      | Х                              | Х          |                          | Х                               | Х                                  |  |
| www.iea-retd.org                                  |                          |                                |            |                          |                                 | 16                                 |  |

www.iea-retd.org

**IEA-RET** 



### Agenda

Background, objectives and major findings

Study overview: pathways considered and their advantages/disadvantages

Key policies currently used to promote RES-T

Policy assessment results

Policy recommendations for each pathway

Conclusion and major findings



### Policy options assessed and scored on six criteria

| Criteria                                      | Definition                                                                                                                                                                                                                 |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Increase in<br>alternative energy<br>carriers | Strength of the incentives to stimulate alternative energy carriers, and where possible the results (i.e. share of alternative energy carriers).                                                                           |
| Increase in<br>renewable energy               | Impact of the policy instrument on the use of energy carriers in transport are made from renewable energy sources                                                                                                          |
| GHG emissions reduction                       | GHG emission reduction (TTW and WTW) realised by the instrument in relative (e.g. % reduction in the region) and absolute terms (e.g. in g/km)                                                                             |
| Coverage                                      | Coverage of the instrument; instruments which influence a large share of the supplied energy, infrastructure, or vehicle fleet of a particular region can have a potentially larger effect on RES-T/GHG emission reduction |
| Cost effectiveness                            | Net costs to society in terms of euro per tonne of CO <sub>2</sub> -eq, which is very case-specific                                                                                                                        |
| Ease of<br>implementation                     | Difficulty of implementing the policy instrument (government perspective)                                                                                                                                                  |
| www.iea-retd.org                              | 18                                                                                                                                                                                                                         |



### Scoring reflects the current situation with respect to the stateof-the-art and cost of technology; could change over time

|    | Increase<br>alternative<br>powertrains                              | Increase<br>renewable<br>energy                          | GHG reduction                                      | Coverage                                                      | Cost-<br>effectiveness                      | Ease of<br>Implementation            |
|----|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|--------------------------------------|
|    | Strong decrease<br>in alternative<br>powertrains                    | Strong decrease<br>in renewable<br>energy<br>consumption | Strong increase<br>in relative GHG<br>emissions    | Very small<br>coverage (very<br>small share of<br>the market) | Very high net<br>costs to society           | Very difficult                       |
| -  | Decrease in<br>alternative<br>powertrains                           | Decrease in<br>renewable<br>energy<br>consumption        | Increase in<br>relative GHG<br>emissions           | Small coverage<br>(small share of<br>the market)              | Modest to high<br>net costs to<br>society   | Difficult                            |
| 0  | Neutral impact<br>on alternative<br>powertrains (i.e.<br>no change) | Neutral impact<br>on renewable<br>energy<br>consumption  | Neutral impact<br>on relative<br>GHG emissions     | Medium<br>coverage<br>(significant share<br>of the market)    | (close to) neutral<br>costs to society      | Modest                               |
| +  | Increase in<br>alternative<br>powertrains                           | Increase in<br>renewable<br>energy<br>consumption        | Decrease in<br>relative GHG<br>emissions           | Large coverage<br>(large share of<br>the market)              | Modest to high<br>net benefit to<br>society | Easy                                 |
| ++ | Strong Increase<br>in alternative<br>powertrains                    | Strong increase<br>in renewable<br>energy<br>consumption | Strong<br>decrease in<br>relative GHG<br>emissions | Very large<br>coverage (entire<br>market)                     | Very large net<br>benefit to society        | Very easy                            |
| #  | Unclear or<br>dependent on<br>design                                | Unclear or<br>dependent on<br>design                     | Unclear or<br>dependent on<br>design               | Unclear or<br>dependent on<br>design                          | Unclear or<br>dependent on<br>design        | Unclear or<br>dependent on<br>design |



# Most effective instruments to increase alternative powertrains are ZEV mandates, incentives in vehicle registration taxes, and incentives in company car taxation schemes

|                           |                                                | Eff                               | ectiveness                      | ;              |          | Other crite            | eria                      |
|---------------------------|------------------------------------------------|-----------------------------------|---------------------------------|----------------|----------|------------------------|---------------------------|
| Type of policy instrument |                                                | Increase<br>Alt. Power-<br>trains | Increase<br>renewable<br>energy | Reduce<br>GHGs | Coverage | Cost-<br>effectiveness | Ease of<br>Implementation |
| Finar                     | ncial instruments                              |                                   |                                 |                |          |                        |                           |
| 1                         | Incentives in energy taxation                  | o/+                               | +                               | ++             | ++       | +                      | +                         |
| 2                         | Incentives in vehicle registration taxes       | ++                                | 0                               | ++             | ++       | #                      | +                         |
| 3                         | Incentives in company car taxation             | ++                                | 0                               | ++             | +        | #                      | +                         |
| 4                         | PPP and subsidies for energy infrastructure    | o/+                               | o/+                             | o/+            | +        | 0                      | 0                         |
| 5                         | Incentives in (urban) road pricing and tolls   | +                                 | 0                               | o/+            | 0        | -                      | 0                         |
| Regu                      | lation                                         |                                   |                                 |                |          |                        |                           |
| 6                         | Fuel regulation                                | 0                                 | +/++                            | +              | ++       | -                      | 0                         |
| 7                         | Renewable energy mandates                      | 0                                 | ++                              | +              | ++       | -                      | +                         |
| 8                         | Regulation of charging/fuelling infrastructure | +                                 | +                               | +              | ++       | 0                      | +                         |
| 9                         | CO <sub>2</sub> regulation for road vehicles   | +                                 | 0                               | ++             | ++       | ++                     | 0/+                       |
| 10                        | ZEV mandates                                   | ++                                | 0                               | +/++           | +        |                        | -                         |



Traffic and land-use policies and in particular green public procurement usually have much lower coverage as the share of the fleet that is affected is relatively small – financial instruments have the largest coverage

| Effectiveness |                                                 |                                   |                                 |                | Other criteria | a                      |                        |
|---------------|-------------------------------------------------|-----------------------------------|---------------------------------|----------------|----------------|------------------------|------------------------|
| Туре          | e of policy instrument                          | Increase<br>alt. power-<br>trains | Increase<br>renewable<br>energy | Reduce<br>GHGs | Coverage       | Cost-<br>effectiveness | Ease of implementation |
| Traff         | ic management and land-us                       | se policies                       |                                 |                |                |                        |                        |
| 11            | Incentives in parking policies                  | +                                 | 0                               | 0/+            | 0              | -                      | 0/+                    |
| 12            | High Occupancy Vehicle<br>(HOV) lane incentives | +                                 | 0                               | 0/+            | o/-            | +                      | 0/+                    |
| 13            | Urban access restrictions                       | o/+                               | 0                               | o/+            | 0              | #                      | 0                      |
| Othe          | er policies                                     |                                   |                                 |                |                |                        |                        |
| 14            | Information provision                           | o/+                               | o/+                             | o/+            | +              | #                      | +                      |
| 15            | Green public<br>procurement                     | +                                 | 0                               | +              | -              | #                      | +                      |
| 16            | Pilot/demonstration project                     | n/a                               | n/a                             | n/a            | n/a            | n/a                    | n/a                    |
| 17            | Policies to increase RE consumption             | n/a                               | n/a                             | n/a            | n/a            | n/a                    | n/a                    |



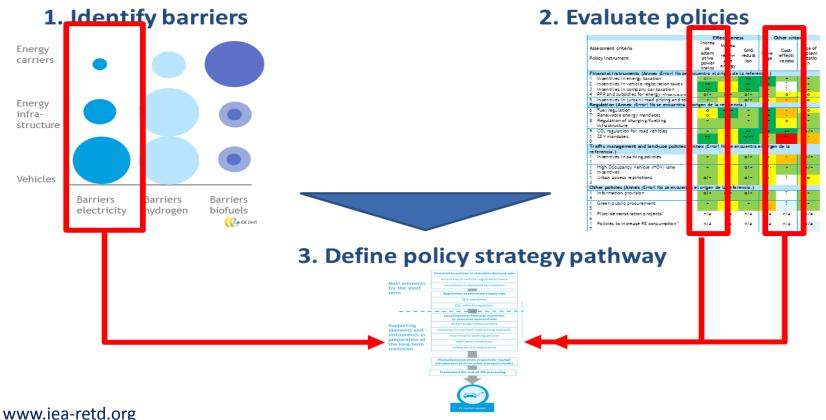
### Agenda

Background, objectives and major findings

Study overview: pathways considered and their advantages/disadvantages

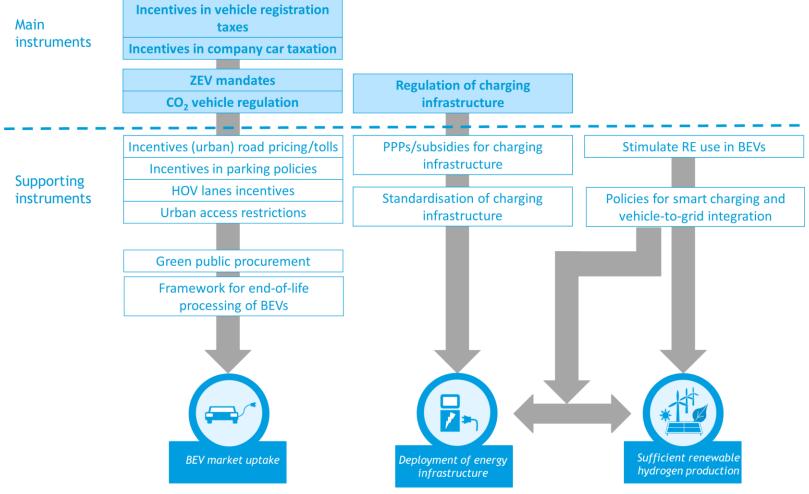
Key policies currently used to promote RES-T

Policy assessment results


Policy strategy for each pathway

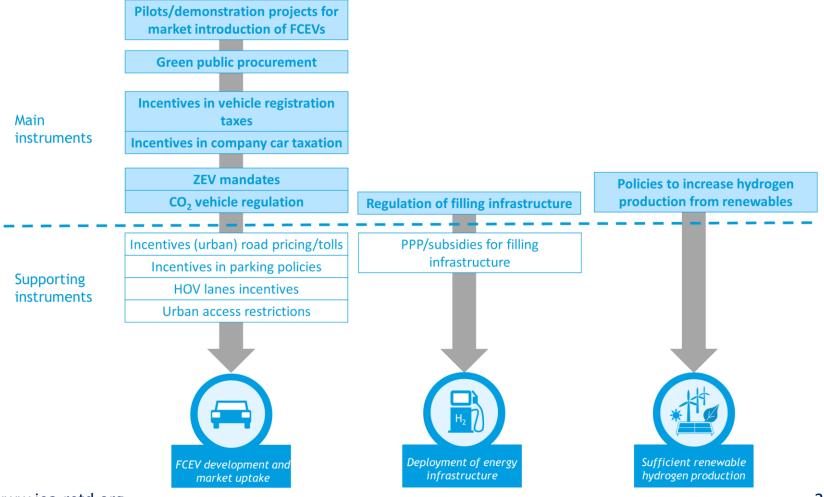
Conclusion and major findings




## Short list of policy instruments was created for each pathway considering barriers and scores of different policy options

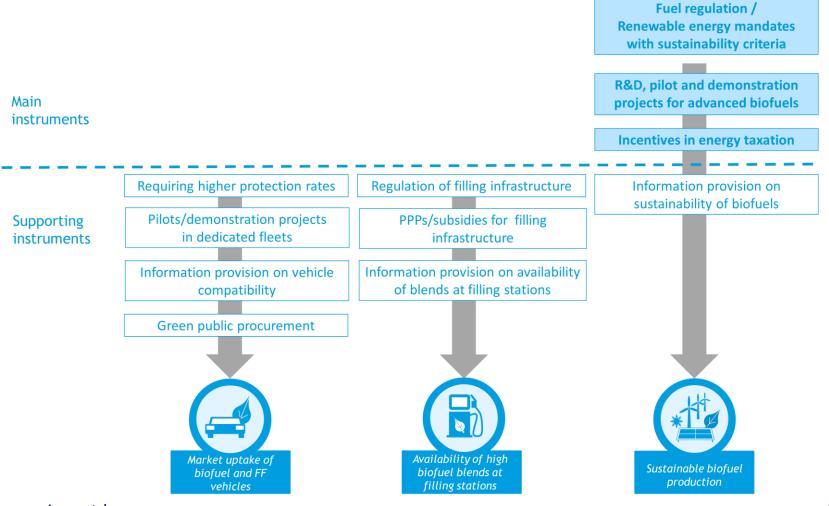
#### Deriving the strategic policy mix for the electric pathway





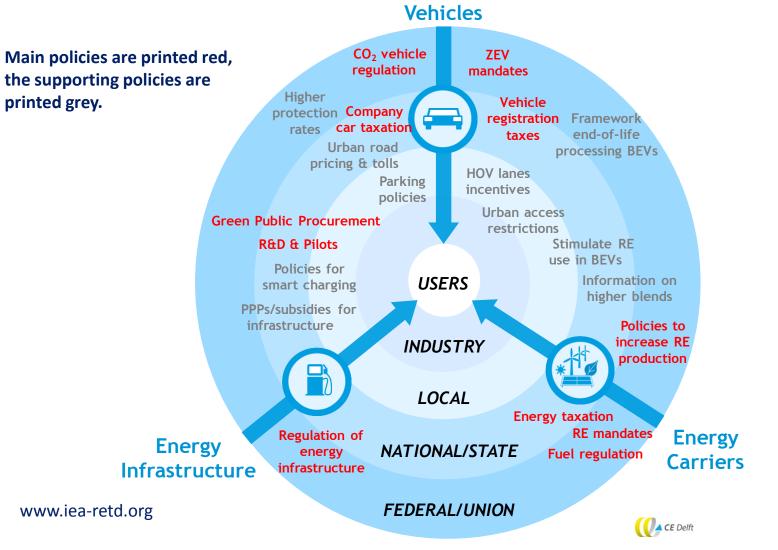

## Main policy instruments: Incentives, ZEV mandates, CO<sub>2</sub> vehicle regulation and regulation of charging






### Same types of main instruments as for battery–electric along with pilot projects, green public procurement and policies to increase RES-hydrogen






### Main policy instruments: Fuel regulation/RE mandates with sustainability criteria, R&D/ pilots for advanced biofuels, incentives




### IEA-RETD

### Most policies are primarily targeting the commercialisation and uptake of technology that is sufficiently mature





## Relevant for all technology pathways and must be taken into consideration





#### Agenda

Background, objectives and major findings

Study overview: pathways considered and their advantages/disadvantages

Key policies currently used to promote RES-T

Policy assessment results

Policy recommendations for each pathway

Conclusion and major findings



## Battery-electric, hydrogen and biofuels can help achieve RES-T and therefore, climate goals

- RES-T is essential to achieve climate goals
- Battery-electric is most promising pathway, though hydrogen is a feasible and complementing pathway too
- Biofuels is easier to implement but concerns remain on GHG emission reductions and sustainability
- Each pathway requires policies at different administrative levels
- Policies need to be coordinated, harmonized and continuous, providing regulatory and investment certainty

IEA-RETD

# Renewable energy sources in transport (RES-T) are crucial for avoiding climate change

- There is a wide variety of policy instruments that can be implemented at different administrative levels to remove the barriers to RES-T change.
- Most policy instruments increase the share of alternative powertrains, but few (also) directly target the share of renewable energy consumption.
- All policies investigated reduce GHG emissions, but highest GHG emission reductions can be expected from instruments targeting both RES-T and fuel efficiency improvements of conventional vehicles.
- There are cross-cutting issues for all three pathways that must be taken into account when designing a policy package:
  - Policies should be designed from a social cost-effectiveness principle, but there could be a trade-off with long-term climate goals
  - Policies should be defined early on and be as continuous as possible
  - The design of policy instruments should be harmonised where possible
  - In choosing the mix of policy instruments, specific local or national circumstances should be taken into account



Battery electric is most promising pathway, though hydrogen may complement or provide an alternative; biofuels depends on the availability of sustainable feedstock

#### **Battery-electric**

- Though there are significant barriers, potential benefits in GHG emissions reduction and improved are quality are high.
- The technology has already been commercialised; it now requires policy instruments which generate volume.
- In the short to medium-term, strict CO<sub>2</sub> regulations for road vehicles and ZEV mandates are very important. The demand side can best be stimulated by financial incentives in VRTs and company car taxation, supported by various local incentives.

#### Hydrogen

- The hydrogen technology is not yet fully commercialised and requires policies which primarily promote pilots, first market uptake and further product development.
- Policies for standardising the technology and for stimulating information sharing to achieve a more positive public perception for this pathway are necessary.

#### **Biofuels**

- The biofuel pathway represents the least radical pathway, with fewest barriers, but also results in smaller and more uncertain reductions of GHG emissions and air pollutants.
- There is a clear need for a long-term policy framework that includes mandates, subtargets for advanced biofuels and financial incentives to guarantee investment security to biofuel producers, OEMs and the fuel industry.
- With guaranteed volumes of available sustainable feedstock, higher blending limits can be established.

### **THANK YOU!**

For additional information on RETD or RES-T-NEXT

Online: www.cedelft.eu www.iea-retd.org Contact: essen@ce.nl

> kristian.petrick@iea-retd.org info@iea-retd.org



**Renewable Energy** 

**Technology Deployment** 

**IEA-RETD** 

#### Abbreviations



| Abbreviatio     | Abbreviation                                                  |                 | n                                                                     |
|-----------------|---------------------------------------------------------------|-----------------|-----------------------------------------------------------------------|
| AFV             | Alternative Fuel Vehicle (includes biofuel vehicles and ZEVs) | LCV             | Light Commercial Vehicle                                              |
| BEV             | Battery Electric Vehicle (includes FEVs/EREVs/PHEVs)          | LDV             | Light Duty Vehicle (LCV/car)                                          |
| CNG             | Compressed Natural Gas                                        | LEV             | Low Emission Vehicle (defined in Californian Standards)               |
| CO <sub>2</sub> | Carbon dioxide                                                | LNG             | Liquefied Natural Gas                                                 |
| СРТ             | Clean Power for Transport                                     | LTZ             | Limited Travel Zones                                                  |
| EREV            | Extended Range Electric Vehicle                               | MJ              | Mega-Joule                                                            |
| ETS             | Emission Trading System                                       | MS              | Member State                                                          |
| EV              | Electric vehicle (includes BEVs/FCEVs)                        | Mt              | Mega ton                                                              |
| FAME            | Fatty acid methyl esters (form of biodiesel)                  | NGO             | Non-Governmental Organisation                                         |
| FCEV            | Fuel Cell Electric Vehicle (running on hydrogen)              | NO <sub>x</sub> | Nitrogen Oxides                                                       |
| FEV             | Full Electric Vehicle                                         | OECD            | Organisation for Economic Co-operation and Development                |
| FFV             | Flex-Fuel Vehicles                                            | OEM             | Original equipment manufacturer                                       |
| FQD             | Fuel Quality Directive                                        | PHEV            | Plug-in Hybrid Electric Vehicle                                       |
| GHG             | GreenHouse Gas                                                | РРР             | Public-Private Partnership                                            |
| GPP             | Green Public Procurement                                      | PZEV            | Partial Zero Emission Vehicle (defined for ZEV Mandates)              |
| GVD             | Greener Vehicle Discount                                      | RE              | Renewable Energy                                                      |
| GVW             | Gross Vehicle Weight                                          | RED             | Renewable Energy Directive                                            |
| H <sub>2</sub>  | Hydrogen                                                      | RES-E           | Renewable Energy Sources for Electricity                              |
| HDV             | Heavy Duty Vehicle (HGV/bus)                                  | RES-T           | Renewable Energy Sources for Transport                                |
| HGV             | Heavy Goods Vehicle                                           | тсо             | Total Cost of Ownership                                               |
| HOV lane        | High Occupancy Vehicle Lane                                   | TTW             | Tank-to-wheel                                                         |
| ICE             | Internal Combustion Engine                                    | ULEV            | Ultra Low Emission Vehicles (ZEVs and relatively fuel efficient ICVs) |
| ICV             | Internal Combustion Engine Vehicle                            | VRT             | Vehicle Registration Taxes                                            |
| ILUC            | Indirect Land Use Change                                      | WTT             | Well-to-tank                                                          |
| kWh             | kilo-Watt-Hour                                                | WTW             | Well-to-wheel                                                         |